Message Passing-Based Joint User Activity Detection and Channel Estimation for Temporally-Correlated Massive Access

نویسندگان

چکیده

This paper studies the user activity detection and channel estimation problem in a temporally-correlated massive access system where very large number of users communicate with base station sporadically each once activated can transmit probability over multiple consecutive frames. We formulate as dynamic compressed sensing (DCS) to exploit both sparsity temporal correlation activity. By leveraging hybrid generalized approximate message passing (HyGAMP) framework, we design computationally efficient algorithm, HyGAMP-DCS, solve this problem. In contrast only exploiting historical estimations, proposed algorithm performs bidirectional between neighboring frames for likelihood update fully activities. Furthermore, develop an expectation maximization HyGAMP-DCS (EM-HyGAMP-DCS) adaptively learn hyperparameters during procedure when statistics are unknown. particular, propose utilize analysis tool state evolution find appropriate hyperparameter initialization EM-HyGAMP-DCS. Simulation results demonstrate that our algorithms significantly improve accuracy reduce error.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Sparse Channel Estimation for Massive MIMO System Based on Dirichlet Process and Combined Message Passing

This paper investigate the problem of estimating sparse channels in massive MIMO systems. Most wireless channel are sparse with large delay spread, while some channels can be observed have common support within a certain area of the antenna array. This common support property is attractive when it comes to the estimation of large number of channels in massive MIMO systems. In this paper, we pro...

متن کامل

Message passing-based joint CFO and channel estimation in millimeter wave systems with one-bit ADCs

Channel estimation at millimeter wave (mmWave) is challenging when large antenna arrays are used. Prior work has leveraged the sparse nature of mmWave channels via compressed sensing based algorithms for channel estimation. Most of these algorithms, though, assume perfect synchronization and are vulnerable to phase errors that arise due to carrier frequency offset (CFO) and phase noise. Recentl...

متن کامل

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Joint Decoding and Estimation of Spatio-Temporally Correlated Binary Sources

In the context of distributed joint source-channel coding, we conceive a joint decoding and estimation scheme for binary Markov sources exhibiting spatio-temporal correlation. The proposed scheme is designed based on the serial concatenation of a trellis coded modulation (TCM) scheme and a unityrate code. The symbol-based maximum a posteriori algorithm employed for TCM decoding is modified in o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Communications

سال: 2023

ISSN: ['1558-0857', '0090-6778']

DOI: https://doi.org/10.1109/tcomm.2023.3261382